
Accepted Manuscript 

This peer-reviewed article has been accepted for publication but not yet copyedited or 
typeset, and so may be subject to change during the production process. The article is 
considered published and may be cited using its DOI. 

10.1017/plc.2023.7 

This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is unaltered and is properly cited. The written permission 
of Cambridge University Press must be obtained for commercial re-use or in order to create a 
derivative work. 

Hazardous chemicals in recycled and 1 

reusable plastic food packaging 2 

 3 

Birgit Geueke1*, Drake W. Phelps2#, Lindsey V. Parkinson1, Jane Muncke1 4 

 5 

1Food Packaging Forum Foundation, Zurich, Switzerland 6 

2Independent Consultant, Raleigh, North Carolina, USA 7 

#Current affiliation: Department of Pharmacology and Toxicology, Brody School of Medicine, East 8 

Carolina University, Greenville, NC, USA 9 

*birgit.geueke@fp-forum.org  10 

https://doi.org/10.1017/plc.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2023.7


Accepted Manuscript 

2 
 

Impact Statement 11 

Society has benefited from plastic food packaging: many foodstuffs have become widely available to 12 

humanity throughout the year. However, a downside of plastic food packaging is its environmental 13 

persistence when local waste management fails or is not available at all. The increasing plastic 14 

pollution is being tackled by different means, one of them being a shift to using more recycled 15 

content in plastic articles. Another approach is to ramp up reusable packaging by introducing 16 

refillable containers. But both approaches – reusing and recycling plastic food packaging – must 17 

address the issue of chemicals that transfer from packaging into food, and that may lead to food 18 

safety issues due to the presence of hazardous chemicals that accumulate in plastics throughout 19 

their life cycle. In this review article, we zoom in on this issue of chemicals in reusable and/or 20 

recyclable plastic food containers, such as packaging and other plastic items that come into contact 21 

with food, like kitchen utensils and tableware. We highlight the scientific evidence and key 22 

knowledge gaps on chemicals in plastics and how some chemicals of concern found in plastics affect 23 

human health. 24 

Abstract  25 

In the battle against plastic pollution many efforts are being undertaken to reduce, reuse, and 26 

recycle plastics. If tackled in the right way, these efforts have the potential to contribute to reducing 27 

plastic waste and plastic’s spread in the environment. However, reusing and recycling plastics can 28 

also lead to unintended negative impacts, because hazardous chemicals, like endocrine disrupters 29 

and carcinogens, can be released during reuse and accumulate during recycling. In this way, plastic 30 

reuse and recycling become vectors for spreading chemicals of concern. This is especially concerning 31 

when plastics are reused for food packaging, or when food packaging is made with recycled plastics. 32 

Therefore, it is of utmost importance that care is taken to avoid hazardous chemicals in plastic food 33 

contact materials, and to ensure that plastic packaging that is reused or made with recycled content 34 

is safe for human health and the environment. The data presented in this review are obtained from 35 

the Database on Migrating and Extractable Food Contact Chemicals (FCCmigex), which is based on 36 

over 700 scientific publications on plastic food contact materials. We provide systematic evidence 37 

for migrating and extractable food contact chemicals (FCCs) in plastic polymers that are typically 38 

reused, such as polyamide (PA), melamine resin (MelRes), polycarbonate (PC), and polypropylene 39 

(PP), or that contain recycled content, such as polyethylene terephthalate (PET). 1332 entries in the 40 

FCCmigex database refer to the detection of 509 FCCs in repeat-use food contact materials made of 41 

plastic. 853 FCCs are found in recycled PET, of which 57.6% have been detected only once. Here, we 42 

compile information on the origin, function, and hazards of FCCs that have been frequently 43 
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detected, such as melamine, 2,4-di-tert-butylphenol, 2,6-di-tert-butylbenzoquinone, caprolactam 44 

and PA oligomers, and highlight key knowledge gaps that are relevant for the assessment of 45 

chemical safety.  46 

Keywords 47 

Plastic food packaging, hazardous chemicals, plastic recycling, reuse  48 
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Introduction  49 

Plastic materials are highly functional and economically used in today’s globalized food systems 50 

(Millican & Agarwal, 2021). Plastics make for lightweight food packaging, can be engineered to 51 

extend shelf-life significantly (De Hoe et al., 2022), and at the same time, they enable profitable 52 

products by allowing for at-scale, high-throughput production and filling, globalized logistics, and 53 

retail selling (Matthews et al., 2021). Most food packaging is made of plastics (Poças et al., 2009), 54 

and around 20% of global plastics production is used for this purpose (Plastics Europe, 2022). The 55 

extensive use of plastic packaging for foodstuffs is also often justified as a means for preventing food 56 

waste (Heller et al., 2019). This makes single-use plastic food packaging an enabler of the current, 57 

globalized, processed foods system that provides convenience to consumers, making it very difficult 58 

to replace (Chakori et al., 2021; Chakori et al., 2022).  59 

But despite its many advantages, the intense and increasing use of plastic food packaging is 60 

associated with serious environmental damage (Borrelle et al., 2020; Jambeck et al., 2015; MacLeod 61 

et al., 2021; Morales-Caselles et al., 2021; Persson et al., 2022; Wilcox et al., 2015) and has led to 62 

increasing calls for amelioration (Borrelle et al., 2020; Geyer et al., 2017; Lau et al., 2020). Therefore, 63 

the United Nations Environmental Program has been tasked with preparing a Global Plastics Treaty 64 

to “end plastic pollution” and develop “an international legally binding instrument” (UNEP, 2022). 65 

The call for reducing plastic pollution from (food) packaging waste has also been heard in several 66 

countries across the globe, and novel approaches are being developed that would allow for 67 

continued use of plastics materials in food packaging while addressing its end-of-life challenges 68 

(Matthews et al., 2021; Prata et al., 2019). This includes designing packaging so that it allows for 69 

recycling (De Hoe et al., 2022; Eriksen et al., 2019; Schyns & Shaver, 2021), for example, by using 70 

only certain polymer types as mono-materials with additional, specific material properties such as 71 

transparency and colorlessness.  72 

However, the focus on plastic packaging recycling is a less favorable option according to the EU’s 73 

waste hierarchy which sees reduction and reuse as preferable approaches (EEA, 2019). For this 74 

reason, there is an increasing push towards reducing overall plastics packaging waste, for example 75 

by setting binding national reduction targets and promoting the reuse of food packaging (EC, 2022b; 76 

EU 2019/904; Klemeš et al., 2021), even though this requires far bigger changes to food production, 77 

logistics, and retail, and is therefore more difficult to implement (Borrelle et al., 2020; Phelan et al., 78 

2022; Wagner, 2022). 79 

In this review, we focus on the important issue of chemicals, as this is an aspect that is often 80 

overlooked when solutions to end plastic pollution from food packaging waste are discussed (Dey et 81 

https://doi.org/10.1017/plc.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2023.7


Accepted Manuscript 

5 
 

al., 2022; Wang & Praetorius, 2022). Indeed, plastics are chemically very complex materials, 82 

containing hundreds of different, synthetic compounds which are more often than not, poorly 83 

characterized for their hazard properties and which in many cases even remain unknown regarding 84 

their chemical identities (Crippa et al., 2019). Still, it is well-established that chemicals transfer from 85 

plastic food packaging into foodstuffs, and this process of chemical migration has been the focus of 86 

over 700 scientific publications (Geueke et al., 2022). At the same time, there is concern about the 87 

adverse health impacts of chemical migration when almost the entire population is ingesting plastic-88 

associated chemicals that are often not studied adequately for their health risks (Groh et al., 2021; 89 

Landrigan et al., 2023; Muncke et al., 2020; Symeonides et al., 2021).  90 

These concerns about migration of hazardous chemicals and their impacts on human health are 91 

especially relevant for plastic food contact materials (FCMs) made from recycled plastics (Cook et al., 92 

2023; Geueke et al., 2018), because unknown and/or hazardous chemicals can accumulate in 93 

recycled material and then migrate into foodstuffs, leading to chronic human exposure, as has been 94 

shown in the case of beverage bottles made from polyethylene terephthalate (PET) plastic 95 

(Gerassimidou et al., 2022; Steimel et al., 2022; Tsochatzis et al., 2022). Illicit plastic recycling, where 96 

non-food grade plastics containing hazardous brominated flame retardants are used to make FCMs, 97 

is prevalent, as data from the European, US, and Korean markets reveal (Paseiro-Cerrato et al., 2021; 98 

Rani et al., 2014; Samsonek & Puype, 2013b; Turner, 2018). Additionally, technical limitations exist 99 

with respect to the recyclability of commonly used plastic food packaging into chemically safe 100 

recycled food packaging because of the inherent physico-chemical properties of the materials that 101 

hamper the efficient removal of chemical contaminants (Palkopoulou et al., 2016). Especially 102 

concerning is the use of recovered plastic waste, e.g., from ocean clean ups, for food contact 103 

applications, as persistent organic pollutants may be present (Gallo et al., 2018). 104 

In addition, for reused plastic food packaging, there is concern about the migration of hazardous 105 

chemicals, for example from consumer (mis-)use of the packaging, or from detergents that can 106 

accumulate in the packaging (Tisler & Christensen, 2022). Indeed, food packaging is often soiled with 107 

food remains and needs thorough cleaning before reuse, but the plastic polymer may even absorb 108 

components of the food or cleaning agents, leading to discoloring and organoleptic changes, or even 109 

unwanted chemical contamination of the packaging that may migrate into the food during reuse. 110 

Also, non-packaging plastic items for food contact, such as kitchen utensils, tableware, baby bottles, 111 

water dispensers, and tubing of milking machines, are often used in repeated contact with food and 112 

are a source of chemicals that migrate into foodstuffs. Common plastic polymers used to make these 113 

items are polyamide (PA), polypropylene (PP), polycarbonate (PC), melamine resin (MelRes), and 114 
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polyvinylchloride (PVC). At present, little attention is paid to this source of chemical food 115 

contamination. 116 

This review provides a systematic overview of food contact chemicals (FCCs) detected in migrates 117 

and extracts of recycled plastic FCMs, with a special focus on recycled PET that is typically used in 118 

single-use packaging. Additionally, we provide evidence for migrating and extractable FCCs from 119 

reusable food contact articles (FCAs) made of plastics, , such as kitchen utensils, plates, cups, and 120 

containers. The data are obtained from the Database on Migrating and Extractable Food Contact 121 

Chemicals (FCCmigex) (Geueke et al., 2022). Human health implications of exposure to frequently 122 

detected FCCs are discussed. This work enables evidence-based decision making regarding the use of 123 

plastic food packaging in the circular economy. 124 

Methods 125 

Evidence for presence of FCCs in migrates and extracts 126 

This review is based on the data and references of a systematic evidence map on FCCs measured in 127 

migrates and extracts of FCMs (Geueke et al. 2022). The results are accessible via an interactive tool, 128 

the FCCmigex dashboard (Food Packaging Forum, 2023). The latest data update considered all 129 

relevant and publicly available studies and reports through October 2022. On April 24, 2023, the 130 

FCCmigex dashboard included 24,810 database entries and 4266 FCCs. This information was 131 

retrieved from 1311 references. The terms FCC, FCM, and FCA were used according to the 132 

definitions in Muncke et al. (2017). 133 

To find data on FCCs that were detected in migrates and extracts of recycled plastics, we first filtered 134 

the FCCmigex database for data and references on PET and recycled PET, which are listed as distinct 135 

FCM types if the relevant references provide this information. We also filtered the full dataset for 136 

“food contact material: plastics” and searched the term “recyc” in the titles and abstracts of the 137 

resulting references, which were then screened with respect to the recycled content of the 138 

investigated plastic FCMs. 139 

For data and references on reusable plastics, we applied the filters “food contact material: plastics” 140 

and “food contact article: repeat-use” in the FCCmigex database. Additionally, we filtered for 141 

“detection: yes”.  142 

We also searched the FCCmigex database for specific chemicals by using their Chemical Abstracts 143 

Service (CAS) Registry Numbers and combined these searches with the FCM of interest. For example, 144 

to obtain information about bisphenol A (BPA, CAS Registry Number 80-05-7) that was detected in 145 

migrates and extracts of reusable PC, we used the following search term and filters: CAS Registry 146 
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Number: 80-05-7, food contact material: plastic > polycarbonate, food contact article: repeat-use, 147 

detection: yes. 148 

Hazards of FCCs 149 

For FCCs that were frequently detected in migrates and extracts of recycled and reusable plastic 150 

FCMs, we compiled the hazard properties according to the criteria mentioned in the European 151 

Chemicals Strategy for Sustainability (CSS) (EC, 2020). The CSS aims at removing the most harmful 152 

chemicals from consumer products, including FCMs. Chemicals that are carcinogenic, mutagenic, or 153 

toxic to reproduction (CMR), have specific target organ toxicity (STOT) or endocrine disrupting 154 

properties, were defined as “most harmful” by the CSS. Also, chemicals with persistence and 155 

bioaccumulation-related hazards (PBT, vPvB) and persistent and mobile chemicals (PMT/vPvT) were 156 

included as chemicals of concern in the CSS.  157 

We applied the methodology as described by (Zimmermann et al., 2022) and referred to the 158 

following hazard sources: European Chemical Agency’s (ECHA) Classification and Labeling (C&L) 159 

inventory that is aligned with the Globally Harmonized System (GHS) for classification and labeling of 160 

chemicals (ECHA, 2023f), GHS-aligned classification by the Japanese Government (NITE, 2023), EU 161 

Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) Substances of Very 162 

High Concern (SVHC) list (ECHA, 2023g), California's Office of Environmental Health Hazard 163 

Assessment’s (OEHHA) Proposition 65 List (OEHHA, 2023), substances identified as endocrine 164 

disruptors at EU level (Endocrine Disruptor List, 2022), PBT/vPvB assessments carried out under the 165 

previous EU chemicals legislation (ECHA, 2007), US Environmental Protection Agency's (EPA) list of 166 

PBT substances (U.S. EPA, 2023), US EPA’s archived list of Priority Chemicals (U.S. EPA, 2016), ECHA's 167 

PBT assessment list (ECHA, 2023a), Stockholm convention (POP) (Stockholm Convention, 2022), 168 

ECHA’s list for inclusion in POPs Regulation, ECHA’s list of substances subject to POPs Regulation 169 

(ECHA, 2023e), and German Environment Agency (UBA) report (Arp & Hale, 2019). All hazard sources 170 

were accessed between January 24-30, 2023.  171 

Based on the GHS for classification and labelling, we defined chemicals with CMR properties that 172 

were assigned to categories 1A and 1B (known and presumed CMR, respectively) and chemicals with 173 

STOT that were classified as category 1 after repeated exposure as having hazard properties of 174 

concern. Chemicals with respiratory system hazards leading to a classification as STOT RE 1 were not 175 

included as they were not considered relevant for FCMs, where chemical exposure is oral. 176 

FCCs that were not listed in any of the twelve sources above were labelled as “no data available”. 177 

For FCCs that have data in any of these sources, but were not categorized as chemical of concern, we 178 

searched for ongoing assessments and notifications in the respective Substance Infocard published 179 
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by ECHA (ECHA, 2023b). We also added references from the peer-reviewed literature regarding 180 

potential hazards of concern if no priority hazards were assigned to a chemical according to 181 

(Zimmermann et al., 2022) or no ongoing regulatory assessments were reported by (ECHA, 2023b). 182 

Results 183 

Plastic data in the FCCmigex database 184 

In the most recent version of the FCCmigex database, we included 824 scientific studies and reports 185 

on plastic FCMs. From these references, 13,958 database entries have been generated, where a 186 

database entry corresponds to one experimental finding (Geueke et al., 2022). More specifically, 187 

each database entry is linked to the reference from which it was generated and provides information 188 

about the FCC, what type of FCA (single or repeat-use) and which FCM(s) were investigated, whether 189 

the experimental set-up was a migration or extraction experiment and if the chemical was detected 190 

or not. Notably, a reference can contain multiple experimental findings, and therefore result in 191 

several database entries. In total, 3009 FCCs were detected in migrates and extracts of plastic FCMs. 192 

We integrated data from nine different types of plastic polymers (PA, PC, polyethylene (PE), PET, PP, 193 

PVC, MelRes, polyurethane (PU), and polystyrene (PS)). Additionally, plastic FCMs that consist of 194 

multilayers and those that were not further specified or made of another polymer, such as Tritan 195 

and polylactic acid, form two more categories of plastic FCMs in the database.  196 

Recycled plastic FCMs 197 

Recycled PET 198 

The FCCmigex database contains 1436 FCCs detected in migrates and extracts of PET, represented by 199 

2455 database entries. 22 of 156 references on PET specifically refer to the detection of FCCs in 200 

migrates and extracts of recycled PET (Figure 1). This percentage does not necessarily reflect the 201 

actual share of recycled content in the investigated samples as in many references no distinction was 202 

made between virgin and recycled PET.  203 

Antimony and acetaldehyde are very often detected FCCs in migrates and extracts of PET (Table 1). 204 

Ortho-phthalates, such as di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), diethyl 205 

phthalate (DEP), dimethyl phthalate (DMP), and diisobutyl phthalate (DiBP), heavy metals, the 206 

monomers ethylene glycol and terephthalic acid, more aldehydes, cyclic PET oligomers, and 2,4-di-207 

tert-butylphenol (2,4-DTBP) are also among the most frequently detected FCCs. On the contrary, 208 

1014 chemicals that have been detected in any PET sample were found only once (corresponding to 209 

one database entry). 523 and 491 of these FCCs are found in virgin/unspecified PET and recycled 210 

PET, respectively (Figure 1), which is mainly the result of untargeted analyses of migrates and 211 
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extracts (Aznar et al., 2020; Brenz et al., 2021; Jaén et al., 2021; Wu et al., 2022). Such untargeted 212 

screenings often lead to the detection of non-intentionally added substances (NIAS), including 213 

reaction by-products, contaminants, and degradation products (Table 1). 214 

When focusing on the FCCs that have been detected in migrates and extracts of PET samples with 215 

confirmed recycled content, the data are sparse (Table 1). Antimony is most frequently detected, 216 

followed by limonene, a common aroma compound, that is considered a marker for recycled 217 

content (Fabris et al., 2010; Thoden van Velzen et al., 2020).  218 

The FCCmigex contains data from a reference describing an untargeted analysis of volatile organic 219 

compounds (VOCs) where 1247 chemicals have been detected and tentatively identified in 45 virgin 220 

and 82 recycled PET samples (Li et al., 2022). In this study, 524 VOCs have been detected only in PET 221 

samples with recycled content, versus 461 chemicals that are present only in virgin PET. 262 222 

chemicals are detected in both types of PET. 1139 of these 1247 chemicals reported by Li and 223 

colleagues have a CAS RN and are included in the FCCmigex interactive dashboard. 1017 of these 224 

1139 chemicals (or 90%) have not previously been detected in any PET migrate or extract, which 225 

illustrates the potential of untargeted studies and also shows the large individual variations of FCAs 226 

made of the same polymer. Hydrocarbons and benzenoids are predominant categories for virgin and 227 

recycled PET samples, respectively. Slip agents, which are commonly used to control friction during 228 

polymer production, have been proposed as possible sources of hydrocarbons in virgin PET, and 229 

some of the benzenoids that are highly prevalent in recycled PET could have originated from food 230 

additives and degradation products of surfactants. To our knowledge, the results of this study form 231 

the most comprehensive, publicly available dataset systematically comparing chemicals in recycled 232 

and virgin PET samples. 233 

Other recycled polymers 234 

The FCCmigex contains only a few references on the chemical migration from specific recycled 235 

polymers other than PET, such as PS, PP, PE, and Tritan. Typical FCCs reported in these references 236 

are volatile organic compounds, including styrene monomer and oligomers from recycled PS (Lin et 237 

al., 2017; Song et al., 2019), degradation products of antioxidants from recycled polyolefins (Coulier 238 

et al., 2007), and contaminations with bisphenols in recycled Tritan that may be explained by the 239 

ubiquitous presence of these substances (Banaderakhshan et al., 2022).  240 

In the decade after 2010, the detection of brominated flame retardants and heavy metals in black 241 

plastic FCAs was an unexpected finding and it indicated that plastic waste from electrical and 242 

electronic equipment is illegally recycled into FCAs (Guzzonato et al., 2017; Puype et al., 2015; Puype 243 

et al., 2019; Samsonek & Puype, 2013a; Turner, 2018).  244 
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Repeat-use plastic FCAs 245 

In the FCCmigex, 1332 database entries from 177 references are related to the detection of 509 FCCs 246 

in repeat-use plastics. The polymer types for which the highest percentage of repeat-use articles has 247 

been studied are MelRes (95.6% repeat-use), PC (68.6%), PA (59.2%), and PP (17.1%) (Figure 2). 248 

Typical FCAs made of MelRes and studied for their chemical migration potential are reusable kitchen 249 

utensils and tableware, often especially designed for babies and children. Examples of repeat-use 250 

FCAs made of PP, PC, and PA that are included in the FCCmigex database are food containers, baby 251 

bottles, and kitchen utensils, respectively. 252 

The most commonly used type of PC contains BPA as monomer. In the last decade, BPA-containing 253 

baby bottles have been banned all over the world due to health and safety concerns, leading to the 254 

replacement of BPA-based PC by other plastic polymers. PA is widely used in kitchen utensils, such as 255 

cooking spoons and spatulas, and other repeat-use FCAs, such as coffee mugs and electric kitchen 256 

appliances. Besides, single-use plastic packaging is also commonly made of PA, such as tea bags and 257 

multilayer plastic films. Food containers are often made of PP, for both single-use and repeat-use. 258 

Further food-contact applications of PP are, e.g., films, bags, and bottle caps.  259 

Across all polymers, PA, PP, PC, and MelRes also have the highest total number of database entries 260 

for repeat-use FCAs (Figure 3). For four polymer types in the FCCmigex database (PE, PET, PS, and 261 

PVC), between 1.8 and 6.2% of their respective database entries are on repeat use (Figure 2). The 262 

FCM categories “multilayer plastics” and PU do not include any information on repeat-use FCAs, 263 

whereas 20.4% of the database entries refer to repeat-use in the category “plastics, non-specified or 264 

other.” 265 

In migrates and extracts of PA and PP, 120 and 122 different FCCs have been identified, respectively, 266 

while 76 different FCCs originate from PC and 45 FCCs from MelRes (Figure 3). On average 4.4 and 267 

3.6 FCCs per reference have been detected for PA and PP, respectively, which contrasts with only 1.7 268 

FCCs per reference for PC and MelRes.  269 

The frequencies of database entries for the most detected FCCs per polymer type are shown in 270 

Figure 4. For PC, 32.4% of the database entries are related to the detection of BPA, while the 271 

remaining 67.6% cover 75 other FCCs. Melamine and formaldehyde account for 50.6% of all 272 

database entries related to MelRes. In contrast, a much higher number of different FCCs has been 273 

detected in the migrates and extracts of PA and PP. Primary aromatic amines (PAAs), the monomer 274 

of PA6 (caprolactam) and cyclic PA oligomers are most frequently detected in PA. Plastic additives, 275 

e.g., Irgafos 168, Irganox 1010, and Irganox 1070, ortho-phthalates, silver, and degradation products 276 
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of antioxidants (2,4-DTBP and 2,6-di-tert-butylbenzoquinone (2,6-DTBQ)) are found with the highest 277 

frequencies in migrates and extracts of PP. 278 

Case studies of chemicals of concern 279 

Table 2 summarizes the highly prevalent FCCs and groups of FCCs that have been detected in 280 

migrates and extracts of repeat-use FCAs and informs about their function, potential origin, hazards, 281 

and their presence on the Union list of authorized substances (EU 10/2011, 2011). Based on these 282 

data, we present three case studies to illustrate the implications of chemical migration from repeat-283 

use plastic FCAs. In the following, we will focus in more detail on cyclic oligomers from PA, the 284 

degradation products of antioxidants commonly used in PP (2,4-DTBP and 2,6-DTBQ), and melamine 285 

from MelRes. All these FCCs are known to be present in plastics after manufacturing or formed 286 

during use, and they have the potential to migrate into foods. However, there is very limited 287 

information on the toxicity of the cyclic PA oligomers as well as 2,4-DTBP, and 2,6-DTBQ (Table 2, 288 

Table 3). The safety of melamine was assessed by the European Food Safety Authority (EFSA) in 2010 289 

(EFSA, 2010), but further research on the human health and environmental hazards of melamine 290 

since then has led to its classification as a substance of very high concern and to its assessment as an 291 

endocrine disrupting chemical (EDC) and PBT (ECHA, 2023c).  292 

Other FCCs that have been frequently detected in repeat-use plastic FCAs, such as ortho-phthalates, 293 

primary aromatic amines, silver, and BPA (Figure 4, Table 2), are not selected here as case studies. 294 

However, it is noteworthy that the European Food Safety Authority recently established a tolerable 295 

daily intake (TDI) of 0.2 ng BPA per kg body weight per day, which is based on BPA’s immunotoxicity 296 

(EFSA, 2023). In comparison with dietary exposure estimates for BPA, this TDI is exceeded by two to 297 

three orders of magnitude in all age groups. The human health effects of exposure to ortho-298 

phthalates have also been recently reassessed (EFSA, 2022), and for silver-containing active 299 

substances human health risk assessment is under discussion (ECHA, 2021a, 2021b, 2021c; EFSA - 300 

ECHA, 2020). For PAAs, strict regulatory measures are already in place (EU 10/2011, 2011) (Table 2). 301 

Case study 1: Cyclic PA oligomers 302 

Caprolactam is a cyclic starting substance used in the synthesis of PA 6, whereas PA 6,6 is made from 303 

two linear monomers hexamethyldiamine and adipic acid. Both types of PA have global production 304 

volumes >1 million metric tons per year, of which a small proportion is used in the manufacture of 305 

repeat-use FCAs, such as kitchen utensils and appliances. Caprolactam and cyclic PA oligomers were 306 

reported to be the most abundant group of FCCs in migrates and extracts of repeat-use FCAs made 307 

of PA in general (Song et al., 2022). In contrast, the linear starting substances of PA 6,6 were typically 308 

not detected (Table 3). Early studies on caprolactam and cyclic PA oligomer migration from repeat-309 
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use PA FCAs were published in the 2000s (Brede & Skjevrak, 2004; Bustos et al., 2009; Skjevrak et al., 310 

2005), but evidence for their migration has increased especially over the last decade (BfR, 2018, 311 

2019b; Hu et al., 2021; Kappenstein et al., 2018) (Table 3). This development is reflected by 312 

improved analytical methods and identification approaches (Song et al., 2022), and the custom 313 

synthesis of reference standards for PA oligomers, which are not commercially available yet 314 

(Canellas et al., 2021).  315 

None of the detected PA oligomers have been found in any of the sources which we consulted to 316 

identify hazard properties of concern. This absence of hazard data has already been discussed when 317 

PA oligomers were increasingly found in migrates and extracts of repeat-use FCAs, and a first safety 318 

assessment of PA oligomers in 2018 relied on the threshold of toxicological concern (TCC) concept to 319 

set specific migration limits (SMLs) of 90 μg/kg food for individual PA oligomers (BfR, 2018; 320 

Kappenstein et al., 2018). A year later, a group SML of 5 mg/kg food was proposed for PA 6 and PA 321 

6,6 oligomers based on toxicity studies for 1,8-diazacyclotetradecan-2,7-dione, which is the smallest 322 

cyclic product of the PA 6,6 monomers hexamethyldiamine and adipic acid (BfR, 2019b). 323 

Nevertheless, oligomer migration from PA has been found to exceed the set values (BfR, 2018, 324 

2019b; Hu et al., 2021).  325 

Case study 2: Degradation products of antioxidants  326 

In PP, antioxidants are needed to prevent oxidation and degradation of the polymer backbone 327 

during processing and service life, which would lead to, e.g., discoloration and reduced stability of 328 

the plastic product. Sterically hindered phenols (e.g., butylated hydroxytoluene, Irganox 1010, 329 

Irganox 1076) and phosphite antioxidants (e.g., Irgafos 168) are commonly used for this purpose 330 

(Dopico-García et al., 2007; Dorey et al., 2020). By intention, antioxidants fulfil their purpose by 331 

reacting in the polymer and forming new substances, of which 2,4-DTBP and 2,6-DTBQ were most 332 

frequently detected in extracts and migrates of repeat-use FCAs made of PP. 2,4-DTBP is a break-333 

down product of Irgafos 168, whereas 2,6-DTBQ is a derivative of sterically hindered phenol 334 

antioxidants. Therefore, 2,4-DTBP and 2,6-DTBQ belong to the group of known and predictable NIAS. 335 

2,4-DTBP is regularly detected in the migrates and extracts of baby bottles made of PP that have 336 

been used as substitutes for PC (da Silva Oliveira et al., 2017; Oliveira et al., 2020; Onghena et al., 337 

2014; Onghena, Negreira, et al., 2016; Onghena, Van Hoeck, et al., 2016; Simoneau et al., 2012). 338 

Most of the database entries related to 2,4-DTBP in the FCCmigex are derived from untargeted 339 

studies (Carrero-Carralero et al., 2019; da Silva Oliveira et al., 2017; Onghena et al., 2014). 340 

Depending on the sample, migration levels of 10-100 μg/kg food are reported (Onghena et al., 341 

2014). Degradation of Irgafos antioxidants and the formation and migration of 2,4-DTBP increases 342 
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when PP is used at elevated temperatures and in contact with hydrophobic food simulants (Barkby, 343 

1995). In another study, microwave heating shows stronger effects on the migration of 2,4-DTBP 344 

than conventional heating (Alin & Hakkarainen, 2011). 2,6-DTBQ is also frequently detected together 345 

with 2,4-DTBP, indicating the simultaneous use of sterically hindered phenols and phosphite 346 

antioxidants in the same FCAs (Carrero-Carralero et al., 2019; Onghena et al., 2014; Onghena, Van 347 

Hoeck, et al., 2016).  348 

In 2019, 2,4-DTBP was measured at ‘unexpectedly high’ concentrations in human urine and a lack of 349 

hazard data has been stated (Liu & Mabury, 2019). In the EU, 2,4-DTBP is currently under 350 

assessment as endocrine disrupting chemical (ECHA, 2023d). In contrast, even less data are available 351 

for 2,6-DTBQ. For example, the EPA’s CompTox Chemicals Dashboard does not list any hazard data, 352 

and the GHS-aligned classification results by the Japanese government do not include 2,6-DTBQ at 353 

all. However, 2,6-DTBQ recently has been found to have mechanistic evidence that indicates 354 

carcinogenic risk (Cui et al., 2022).  355 

Case study 3: Melamine 356 

Melamine belongs to the high-production volume chemicals with an estimated yearly production of 357 

almost 2 million metric tons in 2021 (NexanTECA, 2021). Together with formaldehyde, melamine is 358 

mainly used in the manufacture of MelRes that is commonly used in reusable tableware and kitchen 359 

utensils, often marketed for children. In 2007 and 2008, melamine became a high-profile public issue 360 

after several food-related scandals in which baby milk powder (Chan et al., 2008; Schoder, 2010) as 361 

well as pet food (Chen et al., 2009; Puschner & Reimschuessel, 2011) were adulterated using 362 

melamine. The high nitrogen content of the melamine molecule made it possible to use the 363 

industrial chemical as counterfeit for higher protein levels in feed and foods (Figure 5). In China, 364 

50,000 infants were hospitalized because of these criminal food adulterations, and at least six died 365 

due to renal failure (Xiu & Klein, 2010).   366 

The migration of melamine and formaldehyde from MelRes tableware has been known since 1986 367 

(Ishiwata et al., 1986; Sugita et al., 1990). Since 2005, melamine has been regularly measured in 368 

migrates of tableware and kitchen utensils made of MelRes (Figure 5). Under typical migration 369 

conditions (70°C, 3% acetic acid, 2 hours, 3 repetitions), the SML is exceeded in several studies (BfR, 370 

2019a; Mannoni et al., 2017; Osorio et al., 2020). Conditions that increase melamine migration are 371 

high temperature, low pH of the food/food simulant, and microwaving (Bradley et al., 2010; Ebner et 372 

al., 2020), as well as UV irradiation (Kim et al., 2021).  373 

To simulate repeat-use, three repetitions of the migration tests are recommended because it is 374 

generally expected that migration levels decrease during use (EC 10/2011, 2011). For three 375 
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consecutive cycles, there is evidence that the migration of melamine from MelRes follows these 376 

expectations (García Ibarra et al., 2016). However, other studies show a reversed trend when the 377 

actual use is simulated for more than three cycles, leading to MelRes degradation and increasing the 378 

release of its monomers over time (Mannoni et al., 2017; Mattarozzi et al., 2012).  379 

Significant differences in melamine migration have been observed between samples from different 380 

suppliers that were tested simultaneously (García Ibarra et al., 2016). These results illustrate the 381 

heterogenous quality of MelRes FCAs, which may be caused by varying chemical compositions, 382 

impurities of the starting substances, and diverse manufacturing processes. 383 

Additionally, evidence exists that samples have been labelled as MelRes but instead were made of 384 

urea-formaldehyde resin, using only a melamine coating on the surface (Poovarodom et al., 2011). 385 

Such counterfeit samples show formaldehyde migration exceeding the SML of 15 mg/kg after 386 

successive washing cycles (Poovarodom & Tangmongkollert, 2012).  387 

In recent years, tableware made of MelRes and mixed with bio-based powders or fibers, such as 388 

bamboo, entered the market and was often labelled as “natural”, “compostable” and “eco-friendly.” 389 

However, the materials of natural origin are generally only used as fillers for MelRes, which itself is 390 

fossil-carbon based and not biodegradable. Therefore, such labelling is misleading and contains false 391 

claims. Even more, bio-based fillers decrease the materials’ stability, promote the migration of 392 

melamine and formaldehyde, and lead to the exceedance of SMLs for these FCCs (BfR, 2019a; Osorio 393 

et al., 2020). Consequently, the European Commission states that the use of bamboo and other 394 

plant-based fillers in plastic FCMs is not authorized according to Regulation (EU) 10/2011. Between 395 

May 2021 and April 2022, a European enforcement action plan on plastic FCMs resulted in 748 cases 396 

of plastic FCMs containing ground bamboo as filler that were destroyed, recalled, or taken off the 397 

market (EC, 2022a).  398 

In 2011, the European Commission (EC) lowered the SML of melamine by a factor of 12 to 2.5 mg/kg 399 

food (Commission Regulation (EU) No 1282/2011), which is based on a tolerable daily intake (TDI) of 400 

0.2 mg per kg body weight per day that was derived from the development of urinary bladder stones 401 

(EFSA, 2010; WHO, 2009). The EC also detailed the import conditions of kitchenware made of 402 

MelRes under Commission Regulation (EU) No 284/2011. In 2017, the FDA issued a recommendation 403 

on the use of melamine tableware (U.S. FDA, 2017), and two years later, the German Federal 404 

Institute for Risk Assessment (BfR) published a warning on melamine-type tableware (BfR, 2019a).  405 

Besides being a renal toxicant (NITE, 2023; WHO, 2009), melamine is recognized as vPvM/PMT 406 

chemical (Arp & Hale, 2019; ChemSec, 2019; ECHA, 2023c). It is currently under assessment as an 407 
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EDC and PBT chemical (ECHA, 2023c). Melamine is suspected of damaging the fertility of the unborn 408 

child (ECHA, 2023c) and is possibly carcinogenic to humans (IARC, 2019). It may be metabolized to 409 

cyanuric acid by the gut microbiome, which supports kidney stone formation (Zheng et al., 2013). In 410 

a scoping review, Bolden et al. (2017) map evidence for neurotoxic properties of melamine and 411 

identify toxicological endpoints that are not well-studied, including immune, mutagenic/DNA 412 

damage, and hematological endpoints.  413 

Discussion 414 

Plastic is the most widely used packaging material for foods and beverages around the world. It 415 

generally turns into waste after being used a single time, leading to visible and invisible 416 

environmental problems, such as marine pollution by packaging items, microplastics, and chemicals 417 

(Gallo et al., 2018; Morales-Caselles et al., 2021). Recycling and reuse of materials have been 418 

proposed as measures to reduce the impact of plastic packaging on the environment (Lau et al., 419 

2020). The information on chemical migration that is available in the FCCmigex database and 420 

summarized in this review shows that recycling and reuse of plastic FCAs implies that human 421 

exposure to hazardous chemicals increases if this aspect is not carefully managed. 422 

Recycled PET has been widely used in food contact applications for over 20 years. Especially the use 423 

of recycled beverage bottles has increased due to the establishment of bottle-to-bottle recycling 424 

processes, for which decontamination processes have been developed to reduce chemical 425 

contamination (Welle, 2011). However, there is experimental evidence that recycled PET contains 426 

chemical contaminants that are introduced during use, waste handling, and recycling and that can 427 

migrate into the packaged beverages. Associations have been found between the presence of 428 

recycled content and the migration of, e.g., benzene and styrene (two carcinogenic chemicals) as 429 

well as the endocrine disrupting chemical BPA (Dreolin et al., 2019; Thoden van Velzen et al., 2020). 430 

Based on a systematic evidence map on chemical migration from PET bottles into beverages, other 431 

authors conclude that research comparing the chemical migration from virgin and recycled PET 432 

bottles is relatively sparse (Gerassimidou et al., 2022). This observation is based on the often-433 

unknown level of recycled PET content in beverage bottles.  434 

Recent research aims at developing methods using untargeted screening of PET samples and 435 

machine learning algorithms to effectively discriminate between virgin and recycled content. 436 

Chemometric methods have tentatively identified hundreds of VOCs that are associated with plastic, 437 

food, and cosmetics and reveal significant differences among virgin and recycled PET as well as 438 

geographical regions where the recycled material was collected (Dong et al., 2023; Li et al., 2022; 439 

Peñalver et al., 2022). Such innovative studies provide highly valuable data on the chemicals that are 440 
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present in recycled PET and other polymers (Su et al., 2021). However, whether this methodology 441 

can be used to reliably identify the recycled content in plastic food packaging on a routine basis 442 

remains to be seen. Even more, the question of how to assess the safety of the high number of 443 

chemicals found not only in recycled plastic polymers, but also in virgin plastics, needs to be urgently 444 

addressed. 445 

Compared to recycled PET, even less information is available on the chemical migration from other 446 

mechanically recycled polymers. However, within the last five years, the US FDA issued an increasing 447 

number of favorable opinions on the suitability of recycling processes for producing FCAs made of 448 

polyolefins (U.S. FDA, 2023). These numbers may be a good indicator for the actual use of recycled 449 

polyolefins as FCMs. In the EU, it is expected that, besides PET, other types of recycled plastic 450 

polymers will be available on the market, as the new Commission Regulation EU 2022/2016 on 451 

recycled FCMs and FCAs provides the legal framework for such developments (EC, 2022c; EU 452 

2022/1616, 2022). For example, in 2021, the first request for a safety evaluation of recycled PS was 453 

submitted to EFSA (OpenEFSA, 2021). 454 

In addition to the evidence for chemical migration from FCMs with recycled content that is 455 

presented in this review, research exists on the chemical migration from recycled plastic polymers 456 

that are not used in direct contact with food yet but may be considered as FCMs in the future. 457 

However, these references were not included in the FCCmigex, because we focused on FCAs that 458 

were already on the market (instead of experimental materials under development), and on polymer 459 

samples intended for the manufacture of FCMs. For example, research as well as official 460 

assessments investigating the chemical safety of recycled polyolefins, which are not broadly 461 

approved as FCMs yet, show that chemical contamination and insufficient cleaning technologies 462 

limit the application in direct contact with food (EFSA, 2015, 2016; Horodytska et al., 2020; 463 

Palkopoulou et al., 2016; Su et al., 2021; Zeng et al., 2023). In this context, it is of concern that the 464 

new EU regulation on recycled plastic FCMs provides limited exemptions to allow FCMs produced 465 

with novel recycling technologies to be marketed until sufficient evidence has been gathered to 466 

decide on the suitability of the technology (EU 2022/1616, 2022). 467 

FCCs that have been detected in migrates and extracts of PA, PP, PC, and MelRes can be categorized 468 

into starting substances, i.e., monomers and plastic additives, and NIAS, e.g., reaction by-products, 469 

contaminants, and degradation products (Table 2). Overall, these data indicate that especially some 470 

of the NIAS, such as the PA oligomers and degradation products of antioxidants, are still neglected 471 

by many regulators as they are only present in the final FCA or formed during use. Although there is 472 

evidence of the migration potential, toxicological data and risk assessment lag behind this 473 
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knowledge. A solution could be to broaden the focus from testing the starting substances to also 474 

assessing the safety of the final FCA (after manufacture and over the life cycle of the FCA). 475 

For PC and MelRes, most evidence is related to monomers that are detected in migrates and 476 

extracts. One reason for the frequent detection of BPA, melamine, and formaldehyde may be the 477 

focus of researchers on these well-known and hazardous migrants for which analytical methods and 478 

standards are available, but this knowledge-bias may result in other, equally relevant FCCs being 479 

overlooked. Alternatively, the abundance of these three FCCs may also be a strong indication for the 480 

instability of their respective polymer backbones, leading to migration of monomers that are 481 

released as a consequence of polymer degradation processes occurring during reuse and related 482 

cleaning. The literature is not clear on this, but there is evidence that PC and MelRes are degraded 483 

over repeated use cycles, and migration levels of these monomers increase when tested more than 484 

three times (Brede et al., 2003; Mannoni et al., 2017; Mattarozzi et al., 2012; Nam et al., 2010). 485 

Similarly, oligomers are also formed during manufacture or released during use of PC (Cavazza et al., 486 

2021). Also for PA, there is clear evidence that cyclic oligomers are common manufacturing by-487 

products (Jenke et al., 2005). Although decreasing concentrations of cyclic PA oligomers were 488 

reported after three subsequent migration tests (Kappenstein et al., 2018), it remains open whether 489 

degradation reactions will increase these levels over longer periods of use. Such cases are not 490 

reflected in the current regulation on plastic FCMs, where only three repetitions of the migration 491 

tests are required (EU 10/2011, 2011). Moreover, the recommended test conditions for repeat-use 492 

FCAs do not reflect realistic use conditions, such as dishwashing, that can, for example, lead to the 493 

adsorption of hundreds of dishwasher-related chemicals to the plastic material (Tisler & Christensen, 494 

2022). Therefore, it would be highly desirable to revise the recommendations and regulatory 495 

requirements for repeat-use plastic FCAs to be able to monitor the stability of the polymers over 496 

time as well as the uptake of chemicals under more realistic use conditions.  497 

The degradation of antioxidants in PP and other polyolefins is an expected and well-studied process 498 

(Dorey et al., 2020; Haider & Karlsson, 2002). However, typical degradation products, such as 2,4-499 

DTBP and 2,6-DTBQ, have rarely been targeted in migration studies. Indeed, many of the results for 500 

these chemicals included in the FCCmigex are from untargeted screenings (Hu et al., 2021; Li et al., 501 

2022; Skjevrak et al., 2005). Already in 2014 it was stated that these anticipated degradation 502 

products were not addressed in the European FCM regulation (Onghena et al., 2014), and since then 503 

the situation has not changed. This is especially concerning since 2,4-DTBP is under assessment as an 504 

EDC, and for 2,6-DTBQ limited hazard data indicate potential concern for carcinogenicity (Table 2). 505 

At the same time, these NIAS can be assumed to be present ubiquitously in PP packaging, leading to 506 
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significant human exposure (Liu & Mabury, 2019). Therefore, hazard data for these substances are 507 

urgently needed to fill data gaps. 508 

In this review, we showed that chemical migration from recycled and repeat-use FCAs is of concern, 509 

because FCCs with priority hazard properties are present in all investigated materials. What is more, 510 

for other frequently detected FCCs no or only limited hazard data exist, like PA oligomers and 2,6-511 

DTBQ. Plastic recycling can introduce unknown or known hazardous chemicals originating from all 512 

stages of the life cycle as well as from illicit sources into food packaging and other plastic FCAs. 513 

Further concern stems from the observation that it is very difficult to discriminate virgin and 514 

recycled materials. Additionally, there is evidence for a potential increase in migration rates after 515 

prolonged use of reusable plastic FCAs, which should be better tested in the future.  516 

Many of the data presented here have been acquired in targeted analytical studies. However, there 517 

is currently a shift towards untargeted screening studies, which are more suited to represent the 518 

chemical complexity of a migrate or extract. While the growing body of evidence in this area is highly 519 

appreciated, the question arises how this information can be used to increase the safety of plastic 520 

FCMs, because many of the chemicals detected in such screenings do not have any hazard data and 521 

cannot be tested one by one. In the future, one solution could be the routine implementation of 522 

bioassays to test the safety of migrates and extracts (Groh & Muncke, 2017; Muncke et al., 2023). 523 

Alternatively, a shift towards materials that can be safely reused due to their favorable, inert 524 

material properties could be a promising option to reduce the impacts of single-use food packaging 525 

on the environment and of migrating chemicals on human health. There is an urgent need for 526 

establishing suitable analytical methods with low limits of detection to assess the inertness of FCMs, 527 

and for including such considerations in FCM and packaging regulations all over the world. 528 

Based on these data, we know that many hazardous chemicals have been found in migrates and 529 

extracts of plastic FCMs, and we have evidence for a potential increase in migration rates after 530 

prolonged use of some repeat-use plastic FCAs. Importantly, the introduction of unknown and 531 

known hazardous chemicals during plastics recycling is of concern, and we caution stakeholders on 532 

this matter.  533 
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Table 1. Overview of FCCs that were most frequently detected in migrates and/or extracts of FCMs made of PET (source: FCCmigex), their function and 1098 

potential origin, hazard properties of concern, and presence on presence on the Union list of authorized substances (EU 10/2011).  1099 

FCC CAS RN FCCmigex 

 

Function and 

potential origin 

in PET 

Food contact chemical of 

concern, according to 

Zimmermann et al. (2022) 

Other/not yet confirmed 

hazard properties of 

concern ECHA (2023b) 

Primary literature indicates 

potential concern for* 

Presence on the 

Union list; SML 

[mg/kg food or 

food simulant] 

No. of database 

entries 

(all PET/ 

only recycled 

PET) 

No. of 

references  

(all PET/ 

only recycled 

PET) 

Antimony 7440-36-0 58/11 34/9 Catalyst No priority hazards 

reported 

A majority of data 

submitters agree this 

substance is toxic to 

reproduction  

- Yes; 0.04 

Di-(2-ethylhexyl) 

phthalate (DEHP) 

117-81-7 42/2 31/2 NIAS CMR 

EDC 

No - Yes1; 1.5 

Dibutyl phthalate 

(DBP) 

84-74-2 33/3 23/3 NIAS CMR 

EDC 

Under assessment as PBT - Yes2; 0.3 

Acetaldehyde 75-07-0 29/3 18/2 NIAS 

(degradation 

product) 

CMR No - Yes; 6 

Diethyl phthalate 

(DEP) 

84-66-2 21/2 18/2 NIAS  No priority hazards 

reported 

Under assessment as EDC - No 

Dimethyl 

phthalate (DMP) 

131-11-3 13/2 10/2 NIAS No priority hazards 

reported 

No Immunotoxicity (Chi et al., 

2022); EDC (Mei et al., 2019) 

No 

Decanal 112-31-2 13/2 9/2 NIAS No priority hazards 

reported 

 No - No 

PET cyclic trimer, 

1st series 

7441-32-9 13/1 10/1 NIAS (reaction 

by-product) 

No data available No data available No data available No 

https://doi.org/10.1017/plc.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2023.7


Accepted Manuscript 

32 
 

Nonanal 124-19-6 12/2 8/2 NIAS No priority hazards 

reported 

No No data available No 

Ethylene glycol 107-21-1 12/1 9/1 Monomer CMR No - Yes; 30 (group SML) 

Cobalt 7440-48-4 12/1 8/1 NIAS 

(contamination) 

CMR 

STOT 

No - Yes; 0.05 

Limonene 

isomers 

138-86-3, 

5989-27-5 

11/5 8/4 NIAS (recycling-

related 

contamination) 

No priority hazards 

reported 

Very toxic to aquatic life - No 

Lead 7439-92-1 11/3 9/3 NIAS 

(contamination) 

CMR 

STOT 

No - No; ND 

2,4-di-tert-

butylphenol (2,4-

DTBP) 

96-76-4 11/1 9/1 NIAS 

(degradation 

product of 

antioxidants)  

No priority hazards 

reported 

Under assessment as EDC  - No 

Bisphenol A 

(BPA) 

80-05-7 11/2 8/1 NIAS CMR 

EDC 

No - Yes3; 0.05 

PET cyclic dimer, 

2nd series 

29278-57-7 11/2 8/1 NIAS (reaction 

by-product) 

No data available No data available No data available No 

Terephthalic acid 100-21-0 10/0 9/0 Monomer No priority hazards 

reported 

No Obesogenic properties 

(Molonia et al., 2022) 

Yes; 7.5 (group SML) 

PET cyclic trimer, 

2nd series 

873422-64-

1 

10/1 7/1 NIAS (reaction 

by-product) 

No data available No data available No data available No 

PET cyclic dimer, 

3rd series 

16104-98-6 10/1 4/1 NIAS (reaction 

by-product) 

No data available No data available No data available No 

Diisobutyl 

phthalate (DiBP) 

84-69-5 9/2 8/2 NIAS CMR 

EDC 

Some data submitters 

indicate they consider this 

substance as PBT 

- No 

Cadmium 7440-43-9 9/3 7/3 NIAS 

(contamination) 

CMR 

STOT 

PBT/vPvB 

No - No; ND (LOD 0.002) 
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2-Methyl-1,3-

dioxolane 

497-26-7 9/3 5/2 NIAS (reaction 

by-product) 

No priority hazards 

reported 

 No No data available No 

         

Abbreviations: SML – specific migration limit, NIAS – non-intentionally added substance; CMR – carcinogenic, mutagenic or toxic to reproduction, STOT – 1100 

specific target organ toxicity, EDC – endocrine disrupting chemical, PBT – persistent, bioaccumulative and toxic, vPvB – very persistent, very 1101 

bioaccumulative, vPvM – very persistent, very mobile, ND – the substance shall not migrate in detectable quantities, LOD – level of detection.  1102 

*Primary literature was only consulted when no priority hazards were assigned according to Zimmermann et al. (2022) or no ongoing assessments were 1103 

reported by ECHA (2023b). 1104 

1Only to be used as: (a) plasticizer in repeated use materials and articles contacting non-fatty foods; (b) technical support agent in polyolefins in 1105 

concentrations up to 0,1 % in the final product. 2Only to be used as: (a) plasticizer in repeated use materials and articles contacting non-fatty foods; (b) 1106 

technical support agent in polyolefins in concentrations up to 0,05 % in the final product. 3Not to be used for the manufacture of PC infant feeding bottles 1107 

and PC drinking cups or bottles which, due to their spill proof characteristics, are intended for infants and young children.  1108 

https://doi.org/10.1017/plc.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2023.7


Accepted Manuscript 

34 
 

Table 2. Overview of FCCs that were most frequently detected in migrates and/or extract of repeat-use plastic FCAs (source: FCCmigex), their function and 1109 

potential origin, hazard properties of concern and presence on the Union list of authorized substances (EU 10/2011).  1110 

Polymer 

type 

FCC CAS RN FCCmigex Function and potential 

origin in PET 

Food contact chemical 

of concern, according 

to Zimmermann et al. 

(2022) 

Other/not yet 

confirmed hazard 

properties of concern 

ECHA (2023b) 

Primary literature 

indicates potential 

concern for* 

Presence on the 

Union list; SML 

[mg/kg food or 

food simulant] 
No. of 

database 

entries 

 

No. of 

references 

PA 4,4’-methylene-

dianiline  

101-77-9 11 11 NIAS (potential 

contamination from 

azodyes) 

CMR 

STOT 

No - No1; 

ND (LOD 0.002) 

 

Aniline  62-53-3 12 12 NIAS (potential 

contamination from 

azodyes) 

CMR  

STOT 

No - No1; 

ND (group SML 

0.01) 

 

PA cyclic oligomers  see Table 3 91 8 Reaction by-products No data available No data available No data available No 

Caprolactam 105-60-2 7 5 Monomer No priority hazards 

reported 

No High aquatic mobility 

and concern for toxicity 

(Montes et al., 2022) 

Yes; 15  

PP 2,4-DTBP 96-76-4 13 10 NIAS (degradation 

product of phosphite 

antioxidants) 

No priority hazards 

reported 

Under assessment as 

EDC 

- No 

2,6-di-tert-

butylbenzoquinone 

(2,6-DTBQ) 

719-22-2 9 6 NIAS (degradation 

product of sterically 

hindered phenol 

antioxidants)  

No priority hazards 

reported 

No Carcinogenicity (Cui et 

al., 2022) 

No 

Silver 7440-22-4 12 5 Active substance  No priority hazards 

reported 

Under assessment as 

EDC; 

- No 
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some data submitters 

indicate they consider 

this substance as toxic to 

reproduction 

DBP 84-74-2 9 8 Technical support agent CMR 

EDC 

Under assessment as 

PBT 

- Yes2; 0.3  

DiBP 84-69-5 5 5 NIAS CMR 

EDC 

Some data submitters 

indicate they consider 

this substance as PBT 

- No 

BPA 80-05-7 5 5 NIAS  CMR 

EDC 

No - Yes3; 0.05 

Irgafos 168 31570-04-4 8 7 Plastic additive No priority hazards 

reported 

Under assessment as 

PBT 

- Yes; no SML 

Irganox 1010 6683-19-8 6 4 Plastic additive No priority hazards 

reported 

No No data available Yes; no SML 

Irganox 1076 2082-79-3 4 4 Plastic additive No priority hazards 

reported 

No No data available Yes; 6 

PC BPA 80-05-7 46 38 Monomer CMR 

EDC 

No - Yes3; 0.05 

MelRes Melamine 108-78-1 26 23 Monomer STOT 

PMT, vPvM 

Under assessment as 

PBT and EDC 

- Yes; 2.5 

Formaldehyde 50-00-0 18 17 Monomer CMR No - Yes; 15 (group 

SML) 

Abbreviations: SML – specific migration limit, PA – polyamide, PP – polypropylene, PC – polycarbonate, PAA – primary aromatic amine, NIAS – non-1111 

intentionally added substance; CMR – carcinogenic, mutagenic or toxic to reproduction, STOT – specific target organ toxicity, EDC – endocrine disrupting 1112 

chemical, PBT – persistent, bioaccumulative and toxic, vPvM – very persistent, very mobile, ND – the substance shall not migrate in detectable quantities, 1113 

LOD – level of detection. 1114 
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*Primary literature was only consulted when no priority hazards were assigned according to (Zimmermann et al., 2022) or no ongoing assessments were 1115 

reported by (ECHA, 2023b). 1116 

1“ND” if primary aromatic amine on REACH Annex XVII (detection limit 0.02 mg/kg); if not listed: 0.01 mg/kg (group SML). 2Only to be used as: (a) plasticizer 1117 

in repeated use materials and articles contacting non-fatty foods; (b) technical support agent in polyolefins in concentrations up to 0.05 % in the final 1118 

product. 3Not to be used for the manufacture of PC infant feeding bottles and PC drinking cups or bottles which, due to their spill proof characteristics, are 1119 

intended for infants and young children.  1120 
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Table 3. Polyamide (PA) monomers and cyclic oligomers in extracts and migrates of repeat-use FCAs made of PA. Cyclic oligomers are reaction by-products 1121 

formed during the manufacture of PA 6 and PA 6,6.  1122 

FCC CAS RN FCCmigex  Presence on the Union list; SML 

[mg/kg food or food simulant] No. of database entries No. of references 

PA 6  

cyclic monomer 

Caprolactam 105-60-2 7 5 Yes; 15 

PA 6  

cyclic dimer 

1,8-diazacyclotetradecane-2,9-dione 56403-09-9 9 5 No 

PA 6  

cyclic trimer 

1,8,15-triazacycloheneicosane-2,9,16-trione 56403-08-8 11 7 No 

PA 6  

cyclic tetramer 

1,8,15,22-tetraazacyclooctacosane-2,9,16,23-tetrone 5834-63-9 10 6 No 

PA 6  

cyclic pentamer 

1,8,15,22,29-pentaazacyclopentatriacontane-2,9,16,23,30-pentone 864-90-4 10 6 No 

PA 6  

cyclic hexamer 

1,8,15,22,29,36-hexaazacyclodotetracontane-2,9,16,23,30,37-

hexone 

865-14-5 10 7 No 

PA 6  

cyclic heptamer 

1,8,15,22,29,36,43-heptaazacyclononatetracontane-

2,9,16,23,30,37,44-heptone 

16056-00-1 4 3 No 

PA 6  

cyclic octamer 

1,8,15,22,29,36,43,50-octaazacyclohexapentacontane-

2,9,16,23,30,37,44,51-octone 

16093-69-9 2 2 No 

PA 6  

cyclic nonamer 

1,8,15,22,29,36,43,50,57-nonaazacyclotrihexacontane-

2,9,16,23,30,37,44,51,58-nonone 

50694-79-6 1 1 No 

PA 6,6  

linear monomer 

Hexamethyldiamine 124-09-4 0 0 Yes; 2.4 

PA 6,6  

linear monomer 

Adipic acid 124-04-9 0 0 Yes; no SML 

PA 6,6  

'cyclic monomer' 

1,8-diazacyclotetradecane-2,7-dione 4266-66-4 12 8 No 
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PA 6,6  

cyclic dimer 

1,8,15,22-tetraazacyclooctacosane-2,7,16,21-tetrone 4238-35-1 11 7 No 

PA 6,6  

cyclic trimer 

1,8,15,22,29,36-hexaazacyclodotetracontane-2,7,16,21,30,35-

hexone 

4174-07-6 10 7 No 

PA 6,6 

cyclic tetramer 

1,8,15,22,29,36,43,50-octaazacyclohexapentacontane-

2,7,16,21,30,35,44,49-octone 

4266-65-3 1 1 No 

1123 
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Figure captions 1124 

Figure 1. Aggregated numbers from the FCCmigex database on FCMs made of recycled and 1125 

virgin/unspecified PET. Numbers of references, FCCs, and FCCmigex database entries are shown in 1126 

blue, yellow, and green, respectively. FCCs that were detected only once in any of the PET samples 1127 

are shown in light yellow. Filter applied in the FCCmigex: Detection – yes. 1128 

 1129 

  1130 
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Figure 2. Number of FCCmigex database entries for eleven categories of plastic FCMs. The plastic 1131 

FCMs are divided into nine different polymers (PE, PP, PET, PS, PVC, PA, PC, MelRes, and PU) and 1132 

two other categories (“multilayer plastics” and “plastics, non-specified and others”). Each bar 1133 

displays the number of database entries for single-use FCAs (blue), repeat-use FCAs (yellow), and 1134 

FCAs that were not specified (green). The data labels show the percentage of repeat-use FCAs for 1135 

each category. Filter applied in the FCCmigex: Detection – yes. 1136 

 1137 

  1138 
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Figure 3. Aggregated numbers from the FCCmigex database on repeat-use plastic FCAs by polymer 1139 

type (polyamide (PA); polypropylene (PP); polycarbonate (PC); melamine resin (MelRes), plastic, 1140 

other/non-specified). Numbers of references, FCCs, and FCCmigex database entries are shown in 1141 

blue, yellow, and green, respectively. Filters applied in the FCCmigex: Detection – yes, FCA – repeat-1142 

use. For example, for PA, the FCCmigex contains 27 references with 120 FCCs detected and results 1143 

from 277 experimental findings.  1144 

 1145 

  1146 
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Figure 4. Relative frequency of FCCmigex database entries per FCC for four repeat-use plastic FCAs 1147 

by polymer type (polyamide (PA); polypropylene (PP); polycarbonate (PC); melamine resin (MelRes)). 1148 

Function and potential origin of the most frequently detected FCCs were coded by colors: red – 1149 

restricted substances, yellow – reaction by-products, blue – monomers, green – authorized plastic 1150 

additives, light green – degradation products of antioxidants (NIAS), gray – not authorized for plastic 1151 

FCMs in the EU. Filters applied in the FCCmigex database: Detection – yes, FCA – repeat-use. 1152 

 1153 

  1154 
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Figure 5. Evidence for chemical migration from melamine resin FCAs into foods and food simulants 1155 

represented by number of publications by year and important dates related to melamine and food 1156 

safety. 1157 

 1158 
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